"Vaiz -

Paul Shipley: Implementing A Resource Chargeout System

Implementing A Resource Chargeout System

Paul Shipley
Pleasal Enterprises Pty Ltd

This paper describes some of the issues to be considered in taking chargeout rates and policies,
and implementing them for a resource based chargeout system.

1.INTRODUCTION

Resource based chargeout is charging the clients for
the amount of use they make of computer resources.
This is similar to use of the telephone, where the
final cost is based on the use made and the type of
product. In the case of the telephone it depends on
whether the call is local, STD, ISD, Operator
Assisted, Freecall 008 or Recorded Information
0055. Each of these products have different
charging methods and rates. In the case of
computer chargeout, the final cost depends on usage
of CPU time, disk space, tape rental, lines printed
and various other measures.

Having decided to implement a resource based
chargeout system, the things to be considered are:

The products to be charged for and their rates.

The impact the chargeout system will have on
resource usage.

The chargeout software to be used.
The means of identifying users.

Reporting and client inquiries.

2. WHAT SHOULD BE BILLED?

You obviously have to choose measures that are
accurate and apportional to be your products. The
problem is that there is such a wide choice of
products to be billed in the average sized IS
department or data centre. There is: CPU time,
media mounts, real memory usage, I/O's, disk
space, tape rental. Also databases such as DB/2,
ADABAS, IDMS, IMS. There may be some more
local products like labour hours, PABX, data
networks, PC software, help desk. You need to

know which of these to bill and which to ignore,
because billing some of these can be extremely
unproductive. Table 1 describes some of the
measures that can be used [MERR84].

In the past it was common to bill for real memory
use, however this meant that jobs using significant
virtual memory cost less during periods of real
memory constraint. Therefore clients would submit
these jobs during peak hours because it was cheaper
to do so. Just what you needed! Since the amount
of real memory used by a job is beyond the control
of the client, why bill for real memory? It is better
to include the cost of the memory as part of the
overall CPU time rate calculations and ignore the
memory usage.

3.CHARGEOUT IMPACT

Whatever you choose to bill will have an effect on
the habits of your clients. It is very important to
know not only what you bill, but what you do not
bill and why.

3.1.Billed products

The introduction of a chargeout application will
have an impact on the way the clients use the
system. The extent of this will be determined by
the importance placed on the financial results. Are
the charges just "funny money" off a budget or is it
off a bottom line. Either way what you charge for,
will have an effect on client behaviour.

Charging for TSO logons will cause clients to want
to logon as few times as possible. This will
possibly lead to many clients logged on with very
little activity.

Conversely, charging for TSO connect time will
cause clients to remain connected for as short a time

Paul Shipley: Implementing A Resource Chargeout System

as possible, causing many logon / logoff sequences
for each client.

Unless you are deliberately trying to change client
behaviour it is better to leave such complexity
alone.

3.2.Unbilled products

If you choose not to bill for a product either due to
a staged implementation or problems which prevent
its billing proceeding, it is important to monitor its
usage to ensure that the particular product is not
being overused.

In an actual case, the charging of a widely used
product was delayed due to difficulties in
implementation. When it was finally implemented
it was found that the biggest use of the product was
by the application ranked sixth in overall size,
accounting for 30% of charges for the product. The
overall largest application was the next highest with
5% of charges for the product. All other
applications used much less than this. There was no
apparent reason for this unexpected misalignment
other than the product was not being charged for.

3.3.Discounts and Off-Peak charging

Most data centres will have times during the day,
week or month when there is spare capacity. The
chargeout system can be used to prompt clients to
move some of their work into these times.
However don't be over generous or you may find
that your peak hour moves into the discount period,
with a significant loss of revenue.

4.CHARGEOUT SOFTWARE

There are a number of packages on the market
which measure computer resource usage, some
include chargeout modules. All of these packages
work for someone, the important factor is what
works for you. It is critical to get the right package
at the start since starting over can be very
expensive!

All of the available packages seem to measure
usage, the problems arise with their flexibility and
the financial interfaces.

4.1.Flexibility

Any chargeout system must be flexible in order to
accommodate new products and the changing
environment.

Once you start billing, inevitably you will be
required to bill for new products, including some
you may have not considered, such as: development
team labour hours, network infrastructure, PABX.
If your package can not handle these products you
could have major problems.

The package should also be evaluated for future
growth in both volume and products.

If your package requires you to have all of the data
on one disk volume and this year's data only just
fits, you should not be surprised when next year's
doesn't. This seems obvious, but...

4.2.Financial Interfaces

In most companies the chargeout package will not
be used in isolation, but will be interfaced to other
applications, such as the accounts receivable or
general ledger. Also other charges need to be
integrated for invoicing. This is the area where
packages should be evaluated carefully, since it is
pointless to buy a package only to have to rewrite it
to suit the local environment.

The simplest approach in concept is to take your
existing resource data from your capacity
monitoring application and interface it to your
existing accounts receivable / general ledger by
applying rates, etc. At the other extreme are fully
integrated packages which will take raw usage data
(Eg: SMF) and process it into your other
applications. The correct approach for you will
depend on the skills available to your organisation.

5.CLIENT IDENTIFICATION

One of the most important decisions to be made is
the means of identifying your clients.

In general, if you can bill an entire product or
application to one client, then it is far simpler to

Paul Shipley: Implementing A Resource Chargeout System

chargeout that way. However your client may want
to measure their charges against individuals or work
groups so you may still have to go to the effort of
further identifying clients.

5.1.Types of Identifiers

Depending on the product, varying identifiers are
available. Batch Jobs can be identified by job
name, account code, RACF group and userid. CICS
can be identified by account code, userid and
terminal. Table 2 describes some of the identifiers
that can be used [MERR84].

5.2.0verheads

Some of the charges incurred will be by various
support groups within the Information Technology
organization. For example, who pays for the
system resident volume, system programmer's
logons, and even the chargeout application? There
are several ways of handling this:

Suppress these charges from the chargeout
application completely. The problem with this is
that you cannot measure the cost of support groups.

Separate the overhead charges after determining the
cost, but before posting to the financial
applications.

Process them as with any other charge.

There are probably other ways, how you handle this
will depend on the policies of your financial areas.

6.REPORTING AND ANSWERING
CLIENT INQUIRIES

It seems inevitable that as soon as you have sent out
an invoice to a client, they will be on the phone
querying it. It is your responsibility to provide the
answers.

6.1.What data to hold and for how
long

The chargeout application will generate massive
amounts of data, the problem is to know which of it
should be kept and for how long.

At one end is raw data such as SMF. The problem
with keeping this data for any period of time, apart
from the volume, is you must have the software that
you originally used to process it if you want to
reproduce your original results. The latest software
version may be able to process the old data but the
results may be different. It is probably better to
keep the processed results, such as the cost of each
job with its other details than to try and reproduce
these from the SMF data.

At the other end is the invoicing data, which may
have been sent to the client or posted to the general
ledger. This data should be kept for at least the
same period as the general ledger data.

Intermediate data would have to be considered
individually depending on how useful it is in
helping to answer users queries.

6.2.Reporting

Your clients will quickly overwhelm you with
requests for information and reports, regardless of
how many resources you commit to the task. The
best solution to this is to have a collection of
standard reports which are easily executed with
parameters (eg: via ISPF).

For enquiries that can not be solved by these
reports, have a mechanism to provide the client
with the appropriate data, in a form that they can
manipulate themselves. This may take the form of
a spreadsheet, if that is what your clients are most
comfortable with.

For larger organisations, an enquiry application for
clients to query their own charges may be

necessary.

6.3.Analysing source data problems
and corruptions

Often (hopefully not too often) your clients will
enquire about data problems, usually overcharging.
A fair proportion will be due to simple
misunderstandings of the chargeout mechanism.

Paul Shipley: Implementing A Resource Chargeout System

The remainder will require tracing the charges from
the financial data back to the source. Usually the
problem will stand out from the others in some way.
By following the exceptional charges back into the
more detailed data you should find the source of the
problem.

In a real case, a client complained that his charges
had risen dramatically this month. Comparing this
month's summary with the previous month
confirmed the client's problem and revealed that the
source was Bull Timeshare CPU. The daily
summary showed that one day was over a hundred
times higher than normal. The detailed logon data
indicated that this was entirely due to one logon.
When queried the client remembered a day where
his terminal "locked up" and he switched it off and
went home. His session had been in some sort of
loop and was not cleared until timeshare was
shutdown overnight.

6.4.Abends, Reruns and other
disputes

One area of common dispute is who pays for jobs
that abend and have to be rerun. These situations
are best handled on a case by case basis.

Your clients might try to convince you that they
should not have to pay in the event of certain
abends (because they are caused by operational
errors). This should be resisted. While there may
be the best of intentions on both sides, it is very
easy to deliberately cause an abend. The MVS
ABEND macro can be coded to generate any user
or system abend [SUPERS87].

6.5.Why my $1.00 job cost $3.50

This sort of problem is usually caused by two very
difficult, yet essential, concepts: Capture Ratios
and System Multipliers.

6.5.1.CAPTURE RATIOS:-

are used to match one set of data to another. In the
current context they are most often used to match
the CPU time measured by SMF with the actual
CPU time used as recorded by RMF. While the
means of determining capture ratios is beyond the
scope of this paper, they can vary between types of
loads and software releases. As such they should be

reviewed occasionally (Eg: every six months or
when major new software releases occur).

Capture Ratios can be a very difficult concept to
explain to clients who are neither computer or
statistically literate. = Indeed even application
programmers can find this subject to be heavy
going.

6.5.2.SYSTEM MULTIPLIERS:-

are used to match the amount of CPU time
measured on one processor with the measured time
of a processor of a different speed. For example, a
processor with twice the speed should take half the
CPU time to run a given job. If you are billing by
CPU time then the job would cost half as much on
the faster processor. This may be welcome, but
could result in clients wanting to run all of their
work on the faster processor, leaving you with a
under-utilized slow processor.

A solution to this is to include a system multiplier
of two into the algorithm for the faster processor.
This has the effect of standardizing the costs of jobs
between the two processors. The problem with this
approach is that if the client takes the raw CPU time
(as reported on the job log) and multiplies it by your
advertised rate, the cost they arrive at will be
significantly different to yours.

An alternative solution is to have different rates for
the two processors. However since the rate for the
faster processor would be twice that of the other
processor, the clients will not want to use the faster
processor since it appears to be expensive.
Incorrect, but obvious.

7.AVOIDING OPERATIONAL
PROBLEMS

The chargeout application should be treated in a
similar manner to other production applications. If
you treat it as an inconvenience that distracts from
your "real" work and that "near enough is good
enough”, then you can hardly be surprised when
your clients do not trust your results.

There are three main operational problems:
Duplicate data, Missing data and Corrupt data. The
first two should be addressed by your chargeout
package, otherwise you will have to build your own

Paul Shipley: Implementing A Resource Chargeout System

tools to prevent / monitor them. While
investigating corrupt data was touched on earlier, it
is better for you to find and correct the problem,
rather than your clients telling you. If your package
does not have some sort of profiling or trend
analysis, then you will have to build one.

8.FUNCTIONAL BILLING

Functional Billing is where users are charged in
units they understand, such as accounts processed,
invoices printed, etc. Since these units relate to
business function this type of billing is called
Functional or Transaction Billing. While there is a
wide interest in this, it is nearly impossible to
achieve in practice and is of questionable use.

8.1.Implementing Functional Billing

The first problem you encounter is obtaining the
business function based usage data, since all of the
currently available measures (ie: SMF) are based on
system units. A number of people have tried
matching system level transactions to business
functions, with varying degrees of success.
However this matching will be invalidated with the
next software release. While your change control
procedures can be modified to ensure that new
releases are not implemented until changes have
been investigated for their impact on functional
billing, this is committing you to a process of
continual investigation. Finally, the reliability of
this matching may be uncertain.

The only reliable way to obtain business
transactions is from the application itself. If the
application is already logging this type of data then
you are in luck, but make sure that it includes
enquiry transactions, otherwise you could be in for
a surprise! If the application was developed
in-house you may be able to get the developers to
add transaction logging. Otherwise if the vendor is
not interested in adding this functionality your
options are limited. You are still committed to
continual updates, however this process is much
simpler than matching system transactions.

8.2.Problems with Functional Billing

Apart from the above problems, there are many
others.

The rates (as seen by the clients) are no longer
determined by the cost of CPU seconds but by the
efficiency and complexity of the application code.
If the application developers double the CPU usage
of a transaction, you will have do the same to the
cost of the transaction. Unless you can make the
developers accountable, it will be very difficult to
convince the clients that you are not responsible for
this.

While you may be charging a set rate for a certain
type of transaction, the CPU time taken for the
transaction will vary depending on various system
factors, such as load and database disorganisation.
Who carries the business risk in funding the
difference?

When there are disputes over charges, who is going
to be responsible for their investigation? If the
developers have changed something and it affects
the billing, how will you know? As in the previous
case, unless the developers can be made
accountable, you could be faced with having to
trace their programs for the answers.

Of course the developers are primarily there to
create and modify the functionality of the
applications. They have their own deadlines and
schedules and are quite often being driven in
different directions to you by the same clients.

8.3.Some solutions

The problems with Functional Billing are
predominantly political rather than technical.
Functional Billing was a response to clients
legitimate desire to determine the costs of their
business. For example: How much does it cost to
open a new account? While clients may ideally like
to charge a set fee for each new client transaction,
for the reasons I have outlined this can be very
difficult and expensive to achieve. However this
does not mean that the question cannot be
answered.

Usually it is quite easy to determine overall totals
for the required information. For example, the total
number of new accounts on a certain day and the
total cost of the new account transactions could be

Paul Shipley: Implementing A Resource Chargeout System

determined. From these the average cost can be
determined. The developers should be able to
generate statistics by client area (eg: New accounts
per branch) which the clients can use to determine
their costs. This also has the advantage that if the
average cost rises and your rates have not, then it
must be the developers fault!

9.CONCLUSION

The implementation of a chargeout application is a
combination of technical and political challenges.
As such, several skills other than the straight
technical ones, will be required to win the trust of
all the parties involved. If you believe that buying
a package is the end of the problem, then yours are
just beginning.

REFERENCES

[MASON92] Mason, Phil, Chargeout
Methodologies, CMGA Journal,
November 1992, Turramurra, NSW

[MERR84] Merrill, HW."Barry", Merrill's
Expanded Guide to Computer
Performance Evaluation Using the
SAS System. SAS Institute Inc.,
Cary, North Carolina, USA

[SUPERS87] International Business Machines
Corp., MVS/XA: Supervisor Services
and Macro Instructions,
Poughkeepsie, New York, USA,
GC28-1154-3

ABOUT THE AUTHOR

I have worked in the computer industry since 1984,
mainly developing applications in Cobol, SAS and
Focus. I have spent the past three years as
Technical Leader for Taconet Billing, the Telecom
chargeout application.

Paul Shipley: Implementing A Resource Chargeout System

TABLES

[Product

IMeasures

Batch

ICPU Time

Job Class

Start / End Time

Tape Mounts (Private, Scratch)
[l/Os

Elapsed Time

inting

IAccount code

(when matched to Job records)
Job name
Output device name

TSO

ICPU Time

Logons

I.ogon / Logoff Time
IConnect Time

1/Os

CICS

ICPU Time
[I/Os

Disk

IMega Byte Days
Type of device
Creates / Deletes

Tape

Tape Days

Type of media

Create / Deletes

Silo / Library / Offsite

{Printing

Lines / Pages printed
Form type
(Data centre / Client

Table 1: Measures that can be used for chargeout

[Product

lIdentiﬁers

Batch

ccount code
CF Group

serid

Job Name

TSO

[Account code
RACF Group
{Useri
(Terminal

CICS

ccount code (User extension)
serid

Terminal

Application ID

[Transaction name

Disk

[High Level Qualifier
[Volume Serial

Tape

lAccount code

serid

High Level Qualifier
[Volume Serial

Table 2: Identifiers that can be used for chargeout

